Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
NMR Biomed ; : e5140, 2024 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-38556731

RESUMO

Maternal obesity and hyperglycemia are linked to an elevated risk for obesity, diabetes, and steatotic liver disease in the adult offspring. To establish and validate a noninvasive workflow for perinatal metabolic phenotyping, fixed neonates of common mouse strains were analyzed postmortem via magnetic resonance imaging (MRI)/magnetic resonance spectroscopy (MRS) to assess liver volume and hepatic lipid (HL) content. The key advantage of nondestructive MRI/MRS analysis is the possibility of further tissue analyses, such as immunohistochemistry, RNA extraction, and even proteomics, maximizing the data that can be gained per individual and therefore facilitating comprehensive correlation analyses. This study employed an MRI and 1H-MRS workflow to measure liver volume and HL content in 65 paraformaldehyde-fixed murine neonates at 11.7 T. Liver volume was obtained using semiautomatic segmentation of MRI acquired by a RARE sequence with 0.5-mm slice thickness. HL content was measured by a STEAM sequence, applied with and without water suppression. T1 and T2 relaxation times of lipids and water were measured for respective correction of signal intensity. The HL content, given as CH2/(CH2 + H2O), was calculated, and the intrasession repeatability of the method was tested. The established workflow yielded robust results with a variation of ~3% in repeated measurements for HL content determination. HL content measurements were further validated by correlation analysis with biochemically assessed triglyceride contents (R2 = 0.795) that were measured in littermates. In addition, image quality also allowed quantification of subcutaneous adipose tissue and stomach diameter. The highest HL content was measured in C57Bl/6N (4.2%) and the largest liver volume and stomach diameter in CBA (53.1 mm3 and 6.73 mm) and NMRI (51.4 mm3 and 5.96 mm) neonates, which also had the most subcutaneous adipose tissue. The observed effects were independent of sex and litter size. In conclusion, we have successfully tested and validated a robust MRI/MRS workflow that allows assessment of morphology and HL content and further enables paraformaldehyde-fixed tissue-compatible subsequent analyses in murine neonates.

2.
J Inherit Metab Dis ; 43(5): 981-993, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32118306

RESUMO

Classical organic acidemias (OAs) result from defective mitochondrial catabolism of branched-chain amino acids (BCAAs). Abnormal mitochondrial function relates to oxidative stress, ectopic lipids and insulin resistance (IR). We investigated whether genetically impaired function of mitochondrial BCAA catabolism associates with cardiometabolic risk factors, altered liver and muscle energy metabolism, and IR. In this case-control study, 31 children and young adults with propionic acidemia (PA), methylmalonic acidemia (MMA) or isovaleric acidemia (IVA) were compared with 30 healthy young humans using comprehensive metabolic phenotyping including in vivo 31 P/1 H magnetic resonance spectroscopy of liver and skeletal muscle. Among all OAs, patients with PA exhibited abdominal adiposity, IR, fasting hyperglycaemia and hypertriglyceridemia as well as increased liver fat accumulation, despite dietary energy intake within recommendations for age and sex. In contrast, patients with MMA more frequently featured higher energy intake than recommended and had a different phenotype including hepatomegaly and mildly lower skeletal muscle ATP content. In skeletal muscle of patients with PA, slightly lower inorganic phosphate levels were found. However, hepatic ATP and inorganic phosphate concentrations were not different between all OA patients and controls. In patients with IVA, no abnormalities were detected. Impaired BCAA catabolism in PA, but not in MMA or IVA, was associated with a previously unrecognised, metabolic syndrome-like phenotype with abdominal adiposity potentially resulting from ectopic lipid storage. These findings suggest the need for early cardiometabolic risk factor screening in PA.


Assuntos
Erros Inatos do Metabolismo dos Aminoácidos/sangue , Aminoácidos de Cadeia Ramificada/deficiência , Aminoácidos de Cadeia Ramificada/metabolismo , Isovaleril-CoA Desidrogenase/deficiência , Acidemia Propiônica/sangue , Adolescente , Erros Inatos do Metabolismo dos Aminoácidos/diagnóstico , Distribuição da Gordura Corporal , Fatores de Risco Cardiometabólico , Estudos de Casos e Controles , Criança , Análise por Conglomerados , Metabolismo Energético , Feminino , Humanos , Resistência à Insulina , Isovaleril-CoA Desidrogenase/sangue , Fígado/metabolismo , Espectroscopia de Ressonância Magnética , Masculino , Músculo Esquelético/metabolismo , Acidemia Propiônica/diagnóstico , Adulto Jovem
3.
Tree Physiol ; 39(2): 284-299, 2019 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-30388274

RESUMO

In temperate woody species, carbon transport from source to sink tissues is a striking physiological process, particularly considering seasonal changes. The functions of different tissues can also alternate across the seasons. In this regard, phloem loading and sugar distribution are important aspects of carbon partitioning, and sucrose uptake transporters (SUTs) play a key role in these processes. Therefore, the influence of seasons and different light-dark conditions on the expression of SUTs from 3-year-old Fagus sylvatica L., Quercus robur L. and Picea abies (L.) Karst. trees were analyzed. In addition, tissue-specific sugar and starch contents under these different environmental conditions were determined. Putative SUTs were identified in the gymnosperms (Picea abies, Ginkgo biloba L.), here for the first time, and also in the angiosperms (Q. robur, F. sylvatica). The identified SUT sequences of the different tree species cluster into three types, similar to other SUTs from herbaceous and tree species. Furthermore, the sequences from angiosperm and those from gymnosperm species form distinct clusters within the three types of SUTs. In F. sylvatica, Q. robur and P. abies, the expression levels of the different SUTs during seasons showed marked variations. Because of the high expression levels of type I SUTs in bark, wood and leaves during active growing phases in spring and summer, it can be assumed that they are involved in phloem loading, sucrose retrieval and possibly in further physiological processes. The expression patterns also indicate a flexible expression in all tissues depending on physiological requirements and environmental conditions. Compared with type I SUTs, the seasonal variations of type II SUT expression were less pronounced, whereas the seasonal variations of the type III SUT expression patterns were partly reverse. In addition to the seasonal regulation, the expressions of the different SUTs were also regulated by light in a diurnal manner.


Assuntos
Fagus/metabolismo , Proteínas de Membrana Transportadoras/biossíntese , Picea/metabolismo , Quercus/metabolismo , Sacarose/metabolismo , Árvores/metabolismo , DNA Complementar , DNA de Plantas , Escuridão , Luz , Proteínas de Membrana Transportadoras/genética , Filogenia , Estações do Ano , Açúcares/metabolismo , Árvores/classificação
4.
Biochim Biophys Acta Mol Basis Dis ; 1863(6): 1605-1614, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28235645

RESUMO

Peri-conceptional exposure to maternal obesogenic nutrition is associated with in utero programming of later-life overweight and metabolic disease in the offspring. We aimed to investigate whether dietary intervention with a modified fatty acid quality in an obesogenic high-calorie (HC) diet during the preconception and gestational phases can improve unfavourable effects of an adipogenic maternal environment. In NMRI mice, peri-conceptional and gestational obesity was induced by feeding a HC diet (controls), and they were compared with dams on a fat-modified (Fat-mod) HC diet of the same energy content but enriched with medium-chain fatty acids (MCFAs) and adjusted to a decreased ratio of n-6 to n-3 long-chain polyunsaturated fatty acids (LC-PUFAs). Effects on maternal and placental outcomes at delivery (day 17.5 post coitum) were investigated. Despite comparable energy assimilation between the two groups of dams, the altered fatty acid composition of the Fat-mod HC diet induced lower maternal body weight, weights of fat depots, adipocyte size, and hepatic fat accumulation compared to the unmodified HC diet group. Further, there was a trend towards lower fasting glucose, insulin and leptin concentrations in dams fed the Fat-mod HC diet. Phenotypic changes were accompanied by inhibition of transcript and protein expression of genes involved in hepatic de novo lipogenesis comprising PPARG2 and its target genes Fasn, Acaca, and Fabp4, whereas regulation of other lipogenic factors (Srebf1, Nr1h3, Abca1) appeared to be more complex. The modified diet led to a sex-specific placental response by upregulating PPARG-dependent fatty acid transport gene expression in female versus male placentae. Qualitative modification of the fatty acid spectrum of a high-energy maternal diet, using a combination of both MCFAs and n-3 LC-PUFAs, seems to be a promising interventional approach to ameliorate the adipogenic milieu of mice before and during gestation.


Assuntos
Ácidos Graxos Insaturados/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Obesidade/metabolismo , Placenta/metabolismo , Complicações na Gravidez/metabolismo , Proteínas da Gravidez/biossíntese , Animais , Feminino , Camundongos , Camundongos Obesos , Obesidade/induzido quimicamente , Obesidade/patologia , Placenta/patologia , Gravidez , Complicações na Gravidez/induzido quimicamente , Complicações na Gravidez/patologia
5.
J Exp Bot ; 66(15): 4807-19, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26022258

RESUMO

Trees are generally assumed to be symplastic phloem loaders. A typical feature for most wooden species is an open minor vein structure with symplastic connections between mesophyll cells and phloem cells, which allow sucrose to move cell-to-cell through the plasmodesmata into the phloem. Fraxinus excelsior (Oleaceae) also translocates raffinose family oligosaccharides in addition to sucrose. Sucrose concentration was recently shown to be higher in the phloem sap than in the mesophyll cells. This suggests the involvement of apoplastic steps and the activity of sucrose transporters in addition to symplastic phloem-loading processes. In this study, the sucrose transporter FeSUT1 from F. excelsior was analysed. Heterologous expression in baker's yeast showed that FeSUT1 mediates the uptake of sucrose. Immunohistochemical analyses revealed that FeSUT1 was exclusively located in phloem cells of minor veins and in the transport phloem of F. excelsior. Further characterization identified these cells as sieve elements and possibly ordinary companion cells but not as intermediary cells. The localization and expression pattern point towards functions of FeSUT1 in phloem loading of sucrose as well as in sucrose retrieval. FeSUT1 is most likely responsible for the observed sucrose gradient between mesophyll and phloem. The elevated expression level of FeSUT1 indicated an increased apoplastic carbon export activity from the leaves during spring and late autumn. It is hypothesized that the importance of apoplastic loading is high under low-sucrose conditions and that the availability of two different phloem-loading mechanisms confers advantages for temperate woody species like F. excelsior.


Assuntos
Fraxinus/genética , Proteínas de Membrana Transportadoras/genética , Proteínas de Plantas/genética , Sacarose/metabolismo , Transporte Biológico , Fraxinus/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Organismos Geneticamente Modificados/genética , Organismos Geneticamente Modificados/metabolismo , Floema/metabolismo , Proteínas de Plantas/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo
6.
J Exp Bot ; 65(7): 1905-16, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24591056

RESUMO

Whereas most of the research on phloem loading is performed on herbaceous plants, less is known about phloem loading strategies in trees. In this study, the phloem loading mechanisms of Quercus robur and Fraxinus excelsior were analysed. The following features were examined: the minor vein structure, the sugar concentrations in phloem sap by the laser-aphid-stylet technique, the distribution of photoassimilates in the mesophyll cells by non-aqueous fractionation, gradients of sugar concentrations and osmotic pressure, and the expression of sucrose transporters. The minor vein configurations of Q. robur and F. excelsior belong to the open type. Quercus robur contained companion cells in the minor veins whereas F. excelsior showed intermediary cells in addition to ordinary companion cells. The main carbon transport form in Q. robur was sucrose (~1M). In F. excelsior high amounts of raffinose and stachyose were also transported. However, in both tree species, the osmolality of phloem sap was higher than the osmolality of the mesophyll cells. The concentration gradients between phloem sap and the cytoplasm of mesophyll cells for sucrose were 16-fold and 14-fold for Q. robur and F. excelsior, respectively. Independent of the type of translocated sugars, sucrose transporter cDNAs were cloned from both species. The results indicate that phloem loading of sucrose and other metabolites must involve active loading steps in both tree species. Quercus robur seems to be an apoplastic phloem loader while F. excelsior shows indications of being a symplastic or mixed symplastic-apoplastic phloem loader.


Assuntos
Fraxinus/metabolismo , Floema/metabolismo , Quercus/metabolismo , Sacarose/metabolismo , Transporte Biológico , Fraxinus/genética , Fraxinus/ultraestrutura , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo , Microscopia Eletrônica de Transmissão , Dados de Sequência Molecular , Floema/ultraestrutura , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Reação em Cadeia da Polimerase , Quercus/genética , Quercus/ultraestrutura , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA